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Abstract

The Flory theory has been applied to the following binary mixtures: 2-methoxyethanol �2ME� � 2-ethoxyethanol (2EE),

or� 2-butoxyethanol (2BE), and� 2-�2-methoxyethoxy�ethanol�22MEE�;�2-�2-ethoxyethoxy�ethanol (22EEE), or� 2-(2-

buthoxyethoxy)ethanol (22BEE).

For pure compounds, the coef®cients of thermal expansion a and isothermal compressibility KT were estimated in order to

compute the Flory characteristic parameters, pressure p�i and volume v�i .

For each mixture, the energetic parameter w12 was ®tted to excess enthalpy data HE at 298.15 K and used to predict correctly

the corresponding excess volume VE. The variation of w12 versus the number of C atoms�ÿOÿ groups in alkoxyethanols is

similar to that found previously for 1-alkanol� 1-alkanol mixtures. # 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The OH/O Project is part of a general program, the

so-called TOM Project [1,2], in which mixtures con-

taining the oxygen (±O±) and/or the hydroxyl (±OH)

groups are studied in order to characterise their inter-

actions. Special attention is paid to intra and inter-

molecular effects, related to the presence of ±O± and/

or ±OH groups in the same or different molecules.

Mixtures containing hydroxyethers are very impor-

tant from a theoretical point of view, not only because

of their self-association [3,4], but also due to the

strong intramolecular effects produced by the pre-

sence of ±O± and ±OH groups in the same molecule

(hydroxyether) [3±5]. On the other hand, dipole

moments of alkoyethanols are higher than those of

n-alkanols [6], what suggests the existence of strong

dipole-dipole interactions [4,7±9]. In the framework

of the TOM project, our ®nal purpose is the charac-

terisation of these systems in terms of the DISQUAC

group contribution model [1,2].

With this purpose, up to now we have contributed

to this part of the OH/O project reporting experimental

data at 298.15 K on HE [4,10±12], VE [12±16], excess
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heat capacities at constant pressure [12±14],

liquidÿliquid equilibria [7±9] and vapour±liquid

equilibria [17,18]. More experimental work is in

progress.

The aim of this paper is to analyse the ability of the

Flory theory [19,20] to represent 2-methoxyethanol�
alkoxyethanol mixtures, which show low VE and HE

values [12,21±23], as a consequence of the similar

chemical nature of the components. It is remarkable

that the Flory theory has been applied successfully, not

only to mixtures containing a weakly polar compound

and an inert compound (e.g. linear monoether�
n-alkane [24±26]), but also to 1-alkanol� 1-alkanol

systems [27].

2. Theory

According to the Flory theory [19,20], a molecule

consists of n segments (isomeric portions), each hav-

ing s intermolecular contact sites which can interact

with neighbouring sites. The molar volume v of a pure

liquid is given by

v � r � v0 � v� � v (1)

where v0 is the volume of a mole of segments, v� the

characteristic volume and v the reduced volume. At

temperature T, the value of the reduced volume v can

be calculated from the coef®cient of thermal expan-

sion a using the expression

v � 4Ta� 3

3Ta� 3

� �3

(2)

At zero pressure, the reduced volume v and the

reduced temperature T satisfy the equation

T � v1=3 ÿ 1

v4=3
(3)

The characteristic temperature T� and the characte-

ristic pressure p� can be obtained from the relations

T� � T

T
(4)

p� � a
KT

� �
Tv2 (5)

For a mixture, it is assumed that Eq. (3) is valid and

that the reduced temperature is

T � j1p�1T1 � j2p�2T2

j1p�1 � j2p�2 ÿ j1y2w12

(6)

where j1 and j2 are the segment fractions de®ned by

j2 � 1ÿ j1 �
r2x2

r1x1 � r2x2
(7)

and the site fractions y2 is de®ned by

y2 � s2j2

s1j1 � s2j2

(8)

To compute Eq. (8), it is assumed molecules are

spherical, so that the geometrical parameter S12 �
s1=s2 is estimated using next expression:

S12 � s1

s2

� v�2
v�1

� �1=3

(9)

In Eq. (6), w12 is a constant which characterises the

difference between the energy of interaction among

sites on neighbouring molecules of different species

and the average of the interaction energies in pure

liquids.

Nomenclature

H enthalpy

KT isothermal compressibility coefficient

p pressure

s number of contacts of a molecule

S12 geometric parameter in the Flory

theory

T temperature

v,V volume

x mole fraction

Greek symbols

a isobaric thermal expansivity

w12 energetic parameter in the Flory

theory

j segment fraction in the Flory theory

y site fraction in the Flory theory

Superscripts

E excess value

± reduced value

� characteristic value

Subscripts

i component i
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It is usual to treat w12 as an adjustable parameter,

obtaining its value by ®tting the theoretical expression

for HE, Eq. (10), to experimental results.

HE�x1p�1v�1
1

v1

ÿ 1

v

� �
� x2p�2v�2

1

v2

ÿ 1

v

� �
� x1v�1y2w12

v

(10)

The expression for VE is

VE � x1v�1 � x2v�2
ÿ �

vÿ j1v1 ÿ j2v2� � (11)

In Eqs. (10) and (11), v is the reduced volume of the

mixture which can be evaluated from Eq. (3).

3. Estimation of the energetic parameter

3.1. Thermal coef®cients of pure components

In order to apply the Flory theory, it is necessary to

determine the characteristic parameters of pure com-

pounds (v�i , p�i and T�i , i � 1; 2). With this purpose,

their thermal coef®cients are needed (see Eqs. (2) and

(5)). Data on a and KT at 298.15 K for pure hydro-

xyethers are available in literature [6,28±43]. How-

ever, they are not sure because differ considerably. The

values used in the present work were estimated

according to the following simple rules:

1. Alkoxyethanols must show higher expansivities

than their corresponding homomorphic 1-alkanols

because the later are more self-associated [4,8,9].

2. The compressibility of 1-alkanol is higher than the

corresponding of the homomorphic alkoxyethanol

due to the intramolecular bonds in the later [3±5].

Final values are listed in Table 1.

3.2. Fitting procedure

The energetic parameter w12 was obtained for each

system by means of a Marquardt algorithm [44] which

minimises the objective function

X2�w12� �
X

HE
Flory ÿ HE

Exp

� �2

(12)

The calculated w12 are listed in Table 2. Due to the

rather low HE of the present mixtures, when devel-

oping calculations, caution should be exercised with

the used values of v�i , p�i and T�i . As a matter of fact,

some problems could appear at high dilution because

of the rounded values of v�i , p�i and T�i . The character-

istic parameters directly used in this work are listed in

Table 1.

4. Results and discussion

Results are presented along Tables 2 and 3, and

Figs. 1±6. For the sake of clarity, Tables 2 and 3

include standard deviations de®ned as

s�FE� �
��������������������������������������������
1

N

X
FE

exp ÿ FE
Flory

� �2
r

(13)

Table 1

Physical constants and Flory characteristic parameters of pure components

Componenta vb (cm3/mol) ai
c (Kÿ1) KT,i

c (Paÿ1) p�i
d (J cmÿ3) v�i

e (cm3/mol)

2ME 79.25 9:6� 10ÿ4 8:0� 10ÿ10 549.6 63.94

2EE 97.41 9:3� 10ÿ4 7:7� 10ÿ10 547.6 78.99

2BE 131.86 8:7� 10ÿ4 7:3� 10ÿ10 529.2 108.04

22MEE 118.2 8:8� 10ÿ4 7:4� 10ÿ10 529.9 96.68

22EEE 136.37 8:6� 10ÿ4 7:1� 10ÿ10 536.0 111.94

22BEE 171.15 8:2� 10ÿ4 6:7� 10ÿ10 533.9 141.49

a 2-Methoxyethanol (2ME); 2-ethoxyethanol (2EE); 2-butoxyethanol (2BE); 2-(2-methoxyethoxy)ethanol (22MEE); 2-(2-ethoxyethox-

y)ethanol (22EEE); 2-(2-buthoxyethoxy)ethanol (22BEE).
b From [6].
c Values estimated in this work.
d Calculated using Eq. (5).
e Calculated using Eq. (2).
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where N is the number of data points for each system,

and F is H (enthalpy) or V (volume).

We note that s(HE) increases along a homologous

series for systems having large differences in chain

length (see Table 2). This probably re¯ects a weakness

of the present treatment which essentially assumes

that sites of speci®c interactions associated with dif-

ferent parts of a molecule can be averaged over the

molecule and that a single energy parameter can be

used to describe the interactions between unlike mole-

cules in a mixture [27]. However, it is remarkable that

if w12 is ®tted to HE data of a given mixture, it is

possible to predict correctly the corresponding VE

(Table 3). This con®rms that the Flory theory is useful

in estimating VE from HE for mixtures involving

hydrogen-bonded molecules.

Fig. 4 plots w12 versus the number of C atoms and ±

O± groups in alkoxyethanols. The relative variation is

similar to that of HE and VE (Figs. 5 and 6). So,

w12�CH3ÿ�CH2�nÿOÿCH2ÿCH2OH� > w12�CH3ÿ
�CH2�nÿOÿCH2ÿCH2ÿOÿCH2OH�. 1-Alkanols�
1-alkanols mixtures behave similarly (Figs. 5 and 6).

It is interesting to compare HE of the systems under

study with those of mixtures containing the corre-

sponding homomorphic 1-alkanols. So, at equimolar

composition and 298.15 K, HE�2-methoxyethanol�
2; 2-ethoxyethoxyethanol� � ÿ5:3 J/mol [21] < HE

�1-butanol � 1-octanol� � 103:8 J/mol [27]. In the

same way, HE�2-methoxyethanol� 2; 2-butoxye-

thoxyethanol� � 107:8 J=mol [21] <HE�1-butanol�
1-decanol� � 201:3 J/mol [27]. Such differences

underline the importance of intramolecular H-bonds

Table 2

Comparison of the experimental results [12,21] for HE at 298.15 K with values calculated from the Flory theory using the w12 parameters

determined in this worka

Mixtureb X12 (J cmÿ3) N(HE)c HE(x � 0:5) (J/mol) s(HE) (J/mol)

Flory Experimentald Flory Experimentald

2ME� 2EE 2.231 20 39.4 39.4 0.5 0.3

2ME� 2BE 10.961 21 210.7 210.5 5.6 1.4

2ME� 22MEE ÿ0.660 23 ÿ13.8 ÿ13.4 0.7 0.6

2ME� 22EEE ÿ0.151 25 ÿ5.2 ÿ5.3 1.2 0.6

2ME� 22BEE 5.516 21 109.6 107.8 6.6 0.7

a s(HE) is the standard deviation Eq. (13).
b For symbols, see Table 1.
c Number of experimental points.
d Calculated from Redlich±Kister correlation.

Table 3

Comparison of the experimental results for VE at 298.15 K with values calculated from the Flory theory using the w12 parameters listed in

Table 2a

Mixtureb N(VE)c VE(x � 0:5) (cm3/mol) s(VE) (cm3/mol) Data from ref.

Flory Experimentald Flory Experimentald

2ME� 2EE 9 0.0236 0.0087 0.0113 0.0002 [12,22]

2ME� 2BE 9 0.1307 0.1239 0.0051 0.0009 [12,22]

2ME� 22MEE 9 ÿ0.0038 ÿ0.0235 0.016 0.0003 [12,22]

2ME� 22MEE 20 ÿ0.0038 ÿ0.0109 0.0044 0.0001 [23]

2ME� 22EEE 21 ÿ0.0047 ÿ0.0223 0.0141 0.0002 [23]

2ME� 22BEE 20 0.0544 0.0614 0.007 0.0008 [23]

a s(VE) is the standard deviation Eq. (13).
b For symbols, see Table 1.
c Number of experimental excess volume points.
d Calculated from Redlich±Kister correlation.
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Fig. 1. HE for mixtures between alkoxyethanols at 298.15 K vs. the mole fraction of 2ME. (Points) experimental data [12,21]: (*)

2ME� 2EE; (&) 2ME� 2BE; (~) 2ME� 22MEE; (!) 2ME� 22EEE; (^) 2ME� 22BEE. Solid curves, results from the Flory theory

using w12 listed in Table 2.

Fig. 2. VE for mixtures between alkoxyethanols at 298.15 K vs. the mole fraction of 2ME. (Points) experimental data [12,22]: (*)

2ME� 2EE; (&) 2ME� 2BE. Solid curves, results from the Flory theory using w12 listed in Table 2.
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Fig. 3. VE for mixtures between alkoxyethanols at 298.15 K vs. the mole fraction of 2ME. (Points) experimental data: (*) 2ME� 22MEE

[23]; (*) 2ME� 22MEE [12,22]; (&) 2ME� 22EEE [23]; (~) 2ME� 22BEE [23]. Solid curves, results from the Flory theory using w12

listed in Table 2.

Fig. 4. w12 at 298.15 K for 1-alkanol� 1-alkanol [27] and alkoxyethanol� alkoxyethanol [this work] mixtures vs. n, the number of C atoms

in the 1-alkanol, or m, the number of C atoms and ±O± groups in the alkoxyethanol: (*) methanol� 1-alkanols; (&) ethanol� 1-alkanols;

(~) 1-butanol� 1-alkanols; (!) 2ME� 2EE, �2BE; (^) 2ME� 22MEE� 22EEE;�22BEE.
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Fig. 5. Experimental HE at 298.15 K and equimolar composition for 1-alkanol� 1-alkanol [27] or alkoxyethanol� alkoxyethanol [12,21]

mixtures vs. n, the number of C atoms in the 1-alkanol, or m, the number of C atoms and ±O± groups in the alkoxyethanol: (*)

methanol� 1-alkanols; (&) ethanol� 1-alkanols; (~) 1-butanol� 1-alkanols; (!) 2ME� 2EE, �2BE; (^) 2ME� 22MEE, �22EEE,

�22BEE.

Fig. 6. Experimental VE at 298.15 K and equimolar composition for 1-alkanol� 1-alkanol [27] or alkoxyethanol� alkoxyethanol mixtures

vs. n, the number of C atoms in the 1-alkanol, or m, the number of C atoms and ±O± groups in the alkoxyethanol: (*) methanol� 1-alkanols;

(&) ethanol� 1-alkanols; (~) 1-butanol� 1-alkanols; (!) 2ME� 2EE, �2BE [12,22]; (^) 2ME� 22MEE [12,22]; (^) 2ME� 22MEE,

�22EEE, �22BEE [23].
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in those systems containing hydroxyethers with two ±

O± groups. Note that HE�2-methoxyethanol � 2-

butoxyethanol�>HE�2-methoxyethanol�2; 2-butoxy-

ethoxyethanol� because the larger number of ±O±

groups in 2,2-butoxyethoxyethanol leads to larger

number of inter/intramolecular H-bonds created.

On the contrary, it is expected that HE�2-methoxye-

thanol� 2-ethoxyethanol� > HE�1-butanol � 1-pen-

tanol� and HE�2-methoxyethanol� 2-butoxyethanol�
> HE�1-butanol� 1-heptanol] (Fig. 5). It suggests

that the increase of the dipolar interactions above

mentioned is more important.

The observed increase in HE with the size of

the second component in 2-methoxyethanol�
alkoxyethanol mixtures may be attributed to the more

inert character of the longer hydroxyethers, as well as

their ±O± groups are more sterically hindered to form

inter/intramolecular H-bonds.

5. Conclusions

Energetic parameters w12 for 2-methoxyethanol�
alkoxyethanol systems calculated from HE data at

298.15 K are reported. It is shown that they are useful

to predict the corresponding VE. The variation of w12

versus the number of C atoms�ÿOÿ groups in

alkoxyethanols is similar to that found previously

for 1-alkanol� 1-alkanol mixtures.
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